JT632xA Series Programmable Electronic Load Users' Manual JT6321A/JT6322A/JT6323A/ JT6324A/JT6325A/JT6326A

Edition: V2.8 Copyright belongs to Nanjing Jartul Electronics Co., Ltd

Chapter One: Introduction1				
Chapter	Two: Te	chnical Data	2	
2.1.	Techr	nical Data	2	
2.2.	Instal	lation Dimension	5	
2.3.	Addit	ional Characteristics	5	
Chapter	Three:	Quick Start	6	
3.1.	Front	& Back Panel Overview	6	
3.2.	Prepa	ration Work before Power-on	6	
3.3.	Powe	r-on Self Test	7	
3.4.	Chara	acters Showed at Status Bar	7	
3.5.	Chara	acters Showed at Setting Bar	7	
3.6.	Chara	acters Showed at Measured Value Bar	7	
3.7.	Keys		8	
3.8.	Ports	at the rear panel	8	
3.9.	Menu	Operation	9	
Chapter	Four: P	anel Operation	15	
4.1.	Syste	m Set	15	
	4.1.1.	Electronic Load Operation Range	15	
	4.1.2.	Voltage & Current Range	15	
	4.1.3.	Over Current Protection (OCP)	15	
	4.1.4.	Over Power Protection (OPP)	15	
	4.1.5.	Current Slew Rate	15	
	4.1.6.	Von/Voff	15	
	4.1.7.	Types of Measured Sources	15	
4.2.	Input	Control	15	
	4.2.1.	Input On/Off	15	
	4.2.2.	Short Circuit	15	
4.3.	Trigg	er Operation	16	
4.4.	Basic	Operation Modes	16	
	4.4.1.	Constant Current Mode (CC)	16	
	4.4.2.	Constant Voltage Mode (CV)	16	
	4.4.3.	Constant Power Mode (CP)	16	
	4.4.4.	Constant Resistance Mode (CR)	16	
4.5.	LED	Mode	17	
4.6.	Dyna	mic Operation (DYNA)	17	
4.7.	List C	Dperation (List)	18	
4.8.	Meas	ured Items	19	
	4.8.1.	Average Voltage (V) & Average Current (I) Measurement	19	
	4.8.2.	Ripple Voltage (V_{PP}) and Ripple Current (I_{PP}) Measurement	19	
	4.8.3.	Peak Voltage (V_{P+}/V_{P-}) and Peak Current (I_{P+}/I_{P-}) Measurement	19	
4.9.	Static	Test Mode (S-Test)	19	
	4.9.1.	Over Current Protection Test (OCP)	19	
	4.9.2	Load Effect Test (Load Effect)	20	
4.10) Transier	nt Test (T-Test)	20	

		4.10.1 D	ynamic Frequency Sweep (Sweep)	20
		4.10.2	Timing Measurement (Timing)	21
		4.10.3	Over Voltage Protection (OVP) Test	21
	4.11	Auton	natic Test (A-Test)	21
	4.12	Batter	y Capacity Test (Battery)	23
	4.13	Multi	Loads Synchronous Control	23
	4.14	Remo	te Sensing	24
	4.15	Protec	tion Functions	24
		4.15.1	Over Voltage Protection	24
		4.15.2	Over Current Protection	24
		4.15.3	Over Power Protection	24
		4.15.4	Over Temperature Protection	25
		4.15.5	Input Polarity Reversed Protection	25
	4.16	Save/Red	call Setting	25
	4.17	Rotary K	Inob Usage	25
	4.18	Personal	ized Display Setting	25
Ch	4 T	-		
CII	apter I	Five: Co	mmunication Protocol (SCPI)	
CII	5 .1.	Five: Co SCPI	mmunication Protocol (SCPI)	26
CII	5.1. 5.2.	Five: Co SCPI Regist	mmunication Protocol (SCPI) Command Introduction	26 26 26
Ch	5.1. 5.2. 5.3.	Five: Co SCPI Regist Comm	mmunication Protocol (SCP1) Command Introduction ter Introduction	26 26 26 27
CII	5.1. 5.2. 5.3. 5.4.	Five: Co SCPI Regist Comm Requi	mmunication Protocol (SCPI) Command Introduction ter Introduction	
CII	5.1. 5.2. 5.3. 5.4.	Five: Co SCPI Regist Comm Requit 5.4.1.	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command	
Chi	5.1. 5.2. 5.3. 5.4.	Five: Co SCPI Regist Comm Requit 5.4.1. 5.4.2.	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command	
Ch	5.1. 5.2. 5.3. 5.4. 5.5.	Five: Co SCPI (Regist Comm Requi 5.4.1. 5.4.2. Input 3	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command Setup Command	
	5.1. 5.2. 5.3. 5.4. 5.5.	Five: Co SCPI (Regist Comm Requit 5.4.1. 5.4.2. Input 5 5.5.1.	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command Setup Command Input control	
	5.1. 5.2. 5.3. 5.4. 5.5.	Five: Co SCPI (Regist Comm Requi 5.4.1. 5.4.2. Input 5 5.5.1. 5.5.2.	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command Setup Command Input control System Parameters Setup	26
	5.1. 5.2. 5.3. 5.4.	Five: Co SCPI (Regist Comm Requit 5.4.1. 5.4.2. Input 5 5.5.1. 5.5.2. 5.5.2. 5.5.3.	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command Status Command Setup Command Setup Command System Parameters Setup Working Mode Control	
	5.1. 5.2. 5.3. 5.4.	Five: Co SCPI (Regist Comm Requi 5.4.1. 5.4.2. Input 5 5.5.1. 5.5.2. 5.5.3. 5.5.3. 5.5.4.	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command Setup Command Input control System Parameters Setup Working Mode Control Working Parameters Setup	26
	5.1. 5.2. 5.3. 5.4. 5.5.	Five: Co SCPI (Regist Comm Requit 5.4.1. 5.4.2. Input 5 5.5.1. 5.5.2. 5.5.2. 5.5.3. 5.5.4. Measu	mmunication Protocol (SCP1) Command Introduction ter Introduction	26
	5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	Five: Co SCPI (Regist Comm Requit 5.4.1. 5.4.2. Input 5 5.5.1. 5.5.2. 5.5.3. 5.5.3. 5.5.4. Measu OCP 7	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command Setup Command Setup Command Input control System Parameters Setup Working Mode Control Working Parameters Setup Test Command	26
	5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8.	Five: Co SCPI (Regist Comm Requit 5.4.1. 5.4.2. Input 5 5.5.1. 5.5.2. 5.5.3. 5.5.4. Measu OCP 7 OVP 7	mmunication Protocol (SCP1) Command Introduction ter Introduction	26
	5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9.	Five: Co SCPI (Regist Comm Requit 5.4.1. 5.4.2. Input (5.5.1. 5.5.2. 5.5.3. 5.5.4. Measu OCP 7 OVP 7 Timin	mmunication Protocol (SCP1) Command Introduction ter Introduction non Commands red Command System Command Status Command Setup Command Input control System Parameters Setup Working Mode Control Working Parameters Setup tre Command Fest Command Setup Command	26
	5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10.	Five: Co SCPI (Regist Comm Requit 5.4.1. 5.4.2. Input 5 5.5.1. 5.5.2. 5.5.3. 5.5.4. Measu OCP 7 OVP 7 Timin, Peak 7	mmunication Protocol (SCPI) Command Introduction ter Introduction non Commands red Command System Command System Command Status Command Status Command Status Command System Command System Command System Parameters Setup Working Mode Control Working Parameters Setup ure Command Fest Command Ifest Command Fest Command Fest Command Fest Command	26

Chapter One: Introduction

JT632xA series electronic load is functioned with 500KHz high-speed synchronous sampling, DSP technology, powerful transient test and multi-aspect intelligence analysis. All these four functions are fully integrated into automatic test function, which makes JT632xA series electronic load very suitable for testing power supply when produced in large quantity. Besides, JT632xA series electronic load also possesses the features of current rising slew rate programmable, high-speed dynamic loading and programmable list function, which makes JT632xA series electronic load satisfying most of R&D requirements. Moreover, JT632xA series load's synchronous control function can satisfy the synchronous loading requirements of multi-output power supply and satisfy single-output power supply requirement for big power.

Features:

- ★ Max. power: 300W; Max. current: 60A; Max. voltage: 500V.
- ★ Support up to 16 loads synchronous loading & dynamic test, fit for testing multi-output power supply.
- \star Support up to 16 loads parallel mode for high power.
- ★ 500KHz synchronous sampling with 10Hz, 10uA, 0.1mV stable resolution.
- ★ Support the measurement of ripple voltage/current (Vpp/Ipp), peak voltage/current (Vp+/Ip+) and valley voltage/current (Vp-/Ip-).
- \star The current rising and falling slew rate are both programmable.
- ★ Support CC, CV, CP & CR mode.
- ★ Support accurately simulating LED electronic load loading.
- ★ Support CP & CR mode when in CV/CC source and support CV/CC source detecting and matching when in CR mode.
- ★ Support up to 50KHz dynamic loading mode and peak voltage (Vp+) and valley voltage (Vp-) measurement.
- ★ Support over current protection test (OCP) and maximum power point capture (Pmax).
- ★ Support load effect measurement.
- ★ Support high-speed dynamic frequency sweep function.
- \star Support timing measurement.
- \star Support over voltage protection test (OVP).
- ★ Built-in waveform generator. In list mode, different waveforms can be simulated.
- \star Support short-circuit analog function.
- ★ Support automatic test (A-test) alone.
- \star Support battery resistance and battery capacity test.
- \star Support remote sensing.
- \star Support Von and Voff function.
- \star Shortcut supports 20 groups of data storage and read.
- ★ High-luminance & full view graphic dot matrix screen.
- ★ Over current, over voltage, over power, over temperature, polarity reversed protection
- ★ Intelligent fan system. Fan will be automatically initiated according to the temperature.
- ★ Support external trigger input and output.
- ★ Standard RS232 interface.
- ★ Support current waveform output monitoring.
- ★ Standard SCPI protocol.

Chapter Two: Technical Data

2.1. Technical Data

Model		JT6321A		JT6322A		
	Power	600W		1200W		
Turnut	Voltage	0~15V	0~150V	0~15V	0~150V	
Input	Current	0~12A	0~120A	0~24A	0~240A	
Kaung	Min. operating	1 1/10	ছা 12∩∆	1 41/6	1 41/@2404	
	voltage	1.406		1.4V @240A		
CC	Range	0~12A	0~120A	0~24A	0~240A	
Mode	Resolution	0.2mA	2mA	0.5mA	5mA	
Widde	Accuracy		0.03%+0).05%FS		
CV	Range	0~15V	0~150V	0~15V	0~150V	
C v Mode	Resolution	0.2mV	2mV	0.2mV	2mV	
Widde	Accuracy		0.03%+0).03%FS		
CP	Range	60	WO	120	WO	
Cr Modo	Resolution	16Bits				
Mode	Accuracy		0.1%+0	0.1%FS		
CD	Range	0.0120	2~50ΚΩ	0.006Ω~25ΚΩ		
CK Modo	Resolution	16Bits				
Widde	Accuracy	(0.1+0	.04R)%	(0.1+0.	08R)%	
LED	Bandwidth	100kHz 以上				
Mode	Rd Coefficient		0.00)1~1		
Dunamia	Range	10uS~50S				
Operation	Resolution	2uS				
Mode	Accuracy		1uS+2	OPPM	PM	
Widde	Slew rate	2.4A/mS	~4.8A/uS	4.8A/mS	~9.6A/uS	
Voltago	Range	0~15V	0~150V	0~15V	0~150V	
Meas	Resolution	0.1mV	1mV	0.1mV	1mV	
Wieds.	Accuracy		0.02%+0).03%FS		
Current	Range	0~12A	0~120A	0~24A	0~240A	
Mong	Resolution	0.1mA	1mA	0.1mA	1mA	
wieds.	Accuracy		0.03%+0).05%FS		
Dinnlo	Range	0~15V	0~150V	0~15V	0~150V	
Меня	Bandwidth		10Hz~	100kHz		
meas.	Resolution	1mV	10mV	1mV	10mV	

Model		JT6323A		JT6324A		
	Power	60	W0	1200W		
Innet	Voltage	0~50V	0~500V	0~50V	0~500V	
Input	Current	0~6A	0~60A	0~12A	0~120A	
Kaung	Min. operating	2.8\/	@60∆	2.8\/@	1204	
	voltage	2.00		2.07@		
CC	Range	0~6A	0~60A	0~12A	0~120A	
Mode	Resolution	0.1mA	1mA	0.2mA	2mA	
Widde	Accuracy		0.03%+0	0.05%FS		
CV	Range	0~50V	0~500V	0~50V	0~500V	
C V Mode	Resolution	0.5mV	5mV	0.5mV	5mV	
Widde	Accuracy		0.03%+0).03%FS		
CD	Range	60	WO	120	WO	
CP Modo	Resolution	16Bits				
Mode	Accuracy		0.1%+0	0.1%FS		
CD	Range	0.047Ω~50ΚΩ		0.024Ω~25ΚΩ		
CK Modo	Resolution		16	Bits	its	
Mode	Accuracy	(0.1+0	.02R)%	(0.1+0.04R)%		
LED	Bandwidth		100kH	Iz 以上		
Mode	Rd Coefficient		0.00)1~1		
Dynamia	Range	10uS~50S				
Operation	Resolution	2uS				
Mode	Accuracy	1uS+20PPM				
Mode	Slew rate	1.2A/mS	~2.4A/uS	2.4A/mS~4.8A/uS		
Voltago	Range	0~50V	0~500V	0~50V	0~500V	
Meas	Resolution	0.1mV	1mV	0.1mV	1mV	
wieas.	Accuracy		0.02%+0	0.03%FS		
Current	Range	0~6A	0~60A	0~12A	0~120A	
Meas	Resolution	0.01mA	0.1mA	0.1mA	1mA	
meas.	Accuracy		0.03%+0).05%FS		
Dinnla	Range	0~50V	0~500V	0~50V	0~500V	
Меня	Bandwidth		10Hz~1	100kHz		
wieas.	Resolution	1mV	10mV	1mV	10mV	

Model		JT6325A		JT6326A		
	Power	150	W00	150	W0	
Turnut	Voltage	0~50V	0~500V	0~15V	0~150V	
Input Doting	Current	0~12A	0~120A	0~24A	0~240A	
Kaung	Min. operating	2 8V6	D120A	1 4\/@2404		
	voltage	2.0 V G	e 120A	1.40@	9240A	
CC	Range	0~12A	0~120A	0~24A	0~240A	
Mode	Resolution	0.2mA	2mA	0.5mA	5mA	
Widde	Accuracy		0.03%+0).05%FS		
CV	Range	0~50V	0~500V	0~15V	0~150V	
CV Mode	Resolution	0.5mV	5mV	0.2mV	2mV	
Mode	Accuracy		0.03%+0).03%FS		
CD	Range	150	00W	150	W0	
CP Mada	Resolution	16Bits				
Mode	Accuracy		0.1%+0	-0.1%FS		
CD	Range	0.024Ω~50ΚΩ		0.006Ω~25ΚΩ		
CR	Resolution	16Bits				
Mode	Accuracy	(0.1+0	.04R)%	(0.1+0.08R)%		
LED	Bandwidth	100kHz 以上				
Mode	Rd Coefficient		0.00)1~1	.1	
	Range	10uS~50S				
Dynamic	Resolution	2uS				
Operation	Accuracy	1uS+20PPM				
Mode	Slew rate	1.2A/mS	~2.4A/uS	2.4A/mS~4.8A/uS		
V-14	Range	0~50V	0~500V	0~15V	0~150V	
Voltage	Resolution	0.1mV	1mV	0.1mV	1mV	
wieas.	Accuracy		0.02%+0).03%FS		
	Range	0~12A	0~120A	0~24A	0~240A	
Current	Resolution	0.2mA	2mA	0.1mA	1mA	
Meas.	Accuracy		0.03%+0).05%FS		
D: 1	Range	0~50V	0~500V	0~15V	0~150V	
Кірріе	Bandwidth		10Hz~	100kHz		
Meas.	Resolution	1mV	10mV	1mV	10mV	

2.2. Installation Dimension

2.3. Additional Characteristics

AC power input range (which can be selected by selector switch at the back panel):

(1) AC220V ±10% 50Hz/60Hz

(2) AC110V ±10% 50Hz/60Hz

Heat release method: Forced air cooling

Working temperature: $0 \sim 40^{\circ}$ C

Storage temperature: $-20 \sim 70^{\circ}$ C

Environment: For indoor use with maximum humidity 95%.

Chapter Three: Quick Start

3.1. Front & Back Panel Overview

3.2. Preparation Work before Power-on

1) The electronic load is available of 110V & 220V two kinds of working voltages. Please check if the working voltage of the electronic load matches the power voltage.

2) The fuse of the electronic load should match with the set voltage. Please check if the fuse is correctly installed according to the following table.

AC input voltage setting	AC110V	AC220V
Fuse Specification	T2.5A/250V	T1.25A/250V

3.3. Power-on Self Test

When the electronic load is powered on, it will show the manufacturer, model and software version, etc. Meanwhile, the electronic load will start system self-test. If self-test is not passed, please solve it according to the following table.

Error Information	Solving Methods		
ROM Checksum Error	Firmware code calibration error. Contact product manufacturer or distributor.		
SN Error	Serial number error. Contact product manufacturer or distributor.		
Cal. Data Error	Calibration data error. Recalibrate or contact product manufacturer or distributor.		
Temp. Data Error	Temperature data error. Contact product manufacturer or distributor.		
ADC / DAC Error	Hardware failure. Contact product manufacturer or distributor.		
No Display & Intermittent	Please check if AC input voltage is too low.		
buzzing			

3.4. Characters Showed at Status Bar

ON	Input opens.	OFF	Input closes.
CC	Electronic load is set as CC mode.	CV	Electronic load is set as CV mode.
СР	Electronic load is set as CP mode.	CR	Electronic load is set as CR mode.
DYNA	Electronic load is set as dynamic operation	List	Electronic load is set as programmable list
	mode.		operation mode.
LED	Electronic load is in LED mode.	Auto	Electronic load is in automatic test mode.
RI	Electronic load is in remote disable state.	Trig	Electronic load is waiting for a trigger signal
Shift	Initiate double function keys.	Sense	The remote sensing is initiated.
Rmt	Electronic load is in remote control mode.	Lock	Keyboard is locked and requires the password
			to unlock.
OC	Electronic load is in over current protection	OP	Electronic load is in over power protection
	state.		mode.

3.5. Characters Showed at Setting Bar

Iset	Set current in CC mode	Vset	Set voltage in CV mode
Pset	Set power in CP mode	Rset	Set resistance in CR mode

3.6. Characters Showed at Measured Value Bar

V	Measured value of the input voltage	Ι	Measured value of the loading current
Р	Measured value of the Loading average	R	Measured value of the equivalent
	power		resistance
Vpp	Peak to peak value of the input ripple	Ірр	Peak to peak value of the loading ripple
	voltage		current
Vp+	Peak value of the input voltage	Vp-	Valley value of the input voltage
Ip+	Peak value of the loading current	Ip-	Valley value of the loading current

Nanjing Jartul Electronics Co., Ltd

V	Voltage unit-Volt	А	Current unit-Ampere
W	Power unit-Watt	R	Resistance unit-Ohm
V+	Peak voltage value unit-Volt	V-	Valley voltage value unit-Volt
A+	Peak current value unit-Ampere	A-	Valley current value unit-Ampere
Vp	Peak to peak ripple voltage unit-Volt	Ар	Peak to peak ripple current unit-Ampere

3.7. Keys

Common Keys

I-Set	Start or set CC mode	V-Set	Start or set CV mode
P-Set	Start or set CP mode	R-Set	Start or set CR mode
Shift	Enable or disable double function keys	On/Off	Input turns on or turns off.
0~9	Numeric keys	•	Decimal point key
\leftarrow	Backspace key	Esc	Escape key
	Arrow key	▼	Arrow key
Enter	Confirmation key		

Double Function Keys

(Double function keys can be effective only when *Shift* key is pressed. And the screen will show the word *Shift* at the right corner of the screen.

DYNA	Start or set dynamic mode	List	Start or set List mode
Battery	Start or set battery test mode	Short	Enable or disable short-circuit function
Local	Operate by front panel	Trigger	Trigger operation
S-Test	Static intelligent test mode	T-Test	Dynamic intelligent test mode
A-Test	Automatic test mode	Store	Data storage
Recall	Data recall	Menu	Main menu
	Shortcut of Changing display formats.	▼	Shortcut of changing data measuring rate

3.8. Ports at the rear panel

The electronic load has six 10MHZ isolated ports which are used for the input and output of trigger signals, and the synchronous control of multiple electronic loads.

Port	Single load mode	Master mode	Slave mode	Property
GND	Ground isolation	Ground isolation	Ground isolation	Ground isolation
TRIG	Trigger signal input	Trigger signal input	Reserved	Input
RI	Disable remote signal	Synchronous input of	Synchronous input of	Input
	input	slave loads' signals	master load' signals	
DFI	Device failure indication	Synchronous output of	Synchronous output of	Output
		master load' signals	slave loads' signals	
TX	Trigger signal output	UART data output	UART data output	Output
RX	Reserved	UART data input	UART data input	Input

Limit Parameters (Operating beyond this limit	value may damage equipment interface)
---	---------------------------------------

Parameters	Description	Limit Value	Unit
V _{CEO}	Pull-up voltage output from OC gate	-0.5 ~ 50	V
I _{CEO}	Sink current output from OC gate	0~100	mA

Nanjing Jartul Electronics Co., Ltd					
VI	Input voltage	-0.5~12	V		

Parameters	Description	Min	Туре	Max	Unit
VIH	"H" Input voltage	2.7	3.3	12	V
VIL	"L" Input voltage	0	0	1	V
Note: input of	pen equaling "H", short circ	uit in input and GNI	D equaling "L"		

Working Condition

The following left diagram is the electrical principle diagram of input port and output port. The electronic load also has a standard isolated RS232 port and a 5V/200mA isolated power supply output port. Please refer to the following right diagram for its wiring method. The electronic load also has a current monitoring terminal (I-MONITOR) for monitoring the loading waveform, which output range is 0-10V with 50Khz band width.

3.9. Menu Operation

		Menu	Description
Men	u		Main menu
Т	⊢ Config		Configuration
	C	Measure Rate	Setting Measuring rate. (Shortcut: Shift+▼)
	onfig	Fast	Data update frequency: 10Hz
	04	Medium	Data update frequency: 5Hz
	Remo	Slow	Data update frequency: 2Hz
		Remote Sense	Setting remote sense
		ON	Enable remote sense
		OFF	Disable remote sense
	Input Recall		Recalling the load state
	0	ON	Setting the load to its power-off state
		OFF	Setting the load to its power-on state
		Key Sound	Setting the key sound
		ON	The buzzer will sound when any key was pressed.
		OFF	the buzzer will not sound when any key was pressed
		Key Lock	Setting the key lock
		ON	Enable the key lock. Keys will be automatically locked when
			entering the code and then pausing for 5 seconds.
		OFF	Disable the key lock
		Knob Lock	Setting the rotary knob fine tuning function
		ON	Enable the rotary knob fine tuning function
		OFF	Disable the rotary knob fine tuning function
		Shortcut Call	Setting the shortcut call

	ON			Enable the shortcut call		
		OFF		Disable the shortcut call		
	Trig.	In Ctrl.		Setting the function of the trigger input terminals		
		ON		The trigger input terminals are used to control the load input		
		OFF		The trigger input terminals are used for timing measurement		
	Trig.In Speed			Setting the trigger signals response speed		
	High			Quick response, fit for high quality signals (e.g.		
				program-controlled signals)		
		Low		Slow response, fit for low quality signals (e.g. foot switch)		
	Sync. Mode			Setting synchronous control modes		
	Sy	Sync. Ru	n	Setting synchronous control		
	/nc.		ON	Enable synchronous control		
	Mo		OFF	Disable synchronous control		
	de	Parallel		Setting parallel control		
			ON	Enable parallel control and intelligent power allocation		
			OFF	Disable parallel control and intelligent power allocation		
		Role		Setting the load role		
			Master	Setting the load as the master load		
			Slave	Setting the load as the slave load		
		Slave ID		Setting the slave load ID. This requires to be set only when		
				the load is set as slave load.		
		Scan Slav	/e	Slave load scanning operation. This is used for adjustment		
				when loads are in parallel control. Only the master load has		
				the function.		
	Com	munication	l	Setting communication parameters		
		Baud Rat	e	Setting Baud Rate (2400~115200)		
		Comm Pa	arity	Setting Comm. Parity. (none/even/odd)		
		Multi-Poi	int	Setting the multi-point communication		
			ON	Enable the multi-point communication		
			OFF	Disable the multi-point communication		
		Address S	Set	Setting the load address when in multi-point communication		
	Displ	ay		Setting personalized display		
		Format		Setting display format (shortcut: Shift+▲)		
			2 items	Displaying 2 items (Characters displayed are big)		
			3 items	Displaying 3 items (Characters displayed are medium)		
			6 items	Displaying 6 items (Characters displayed are small)		
	Brightness		SS	Setting display brightness		
	Defa	ult Settings	1	Restoring to factory-default settings		
	Yes Device Info			Confirming to restore to factory-default settings		
				Displaying the device information		
Syster	m Set			Setting the system		
S	V Ra	nge		Selecting the voltage range		
/stei		High		Setting the voltage as high voltage range		
n Se		Low		Setting the voltage as low voltage range		
et	I Range			Selecting the current range		

	Н	ligh		Setting the current as high current range
	L	ow		Setting the current as low current range
1	[_prot			Setting current protection
1	P_prot			Setting power protection
`	Von			Setting Von value
1	Voff			Setting Voff value
	✓ Rate			Setting current rising slew rate
	↘ Rate			Setting current falling slew rate
\$	Source			Setting sources of the devices tested
	C	V Source		Setting the device tested as CV source
	CC Source			Setting the device tested as CC source
	А	uto Detec	et	Detecting automatically the devices tested
Dynam	ic Load			Dynamic mode
D I	Dynamic	c Set		Setting dynamic mode parameters
YN	Ia			Setting low level current
A	Т	a		Setting dwelling time of low level current
	Ib)		Setting high level current
	Т	'b		Setting dwelling time of high level current
	7	* Rate		Setting current rising slew rate
	∖ Rate			Setting current falling slew rate
	Mode			Selecting DYNA working modes
	Mode	М	Continuous	Setting load as continuous mode
		Pulse	Setting load as pulse mode	
			Toggle	Setting load as toggle mode
]	Enter Dy	ynamic N	Iode	Starting Dynamic mode
LED M	lode			Setting LED mode
I	LED Mo	de Set		Setting LED mode parameters
	L	ED Vo		Setting the rated output voltage of the LED power supply
	L	ED Io		Setting the rated output current of the LED power supply
	R	d Coeff		Setting the Rd coefficient
1	Enter LE	D Mode		Entering LED mode
List				Setting the List
1	File			Selecting List files (1~8)
I	Load File	e		Starting List operation mode
I	Edit File			Editing List files
	N	lew Step		Adding a new step to the List file
	St	tep n		Editing n step(1-200) parameters
			Current	Editing n step loading current
			SR	Editing n step current rising slew rate
			Dwell	Editing n step current dwelling time
		ľ	Delete	Deleting the step
(Clear Fil	e		Clearing the present List files
5	Setup			Selecting the List working mode
	N	Iode		Setting the List working mode
			Continuous	Continuous mode

			Count	į	Count mode (1~9999999)
			Step		Single step mode
		Count	Count		Setting the repeating times of the count mode. This is only
					effective to the count mode.
Batte	ry				Testing the battery capacity
Bε	Disch	arge Set			Setting the battery discharge parameters
utter		Mode			Setting the battery discharge working mode CC/CP/CR
У		Value			Setting the battery loading value at discharge state
		Stop Con	dition		Setting the battery stopping discharge condition
			Enable		Enable the battery stopping discharge condition
				Voltage	Enable the battery stopping discharge voltage
				Capacity	Enable the battery stopping discharge capacity
				Time	Enable the battery stopping discharge time
			Voltage	e	Battery stopping discharge voltage
			Capaci	ty	Battery stopping discharge capacity
			Time		Battery stopping discharge time
	Start	Test			Starting battery capacity test
Static Test				Setting the static test	
Š	OCP	CP Test			Setting the OCP test
Test	Q	OCP Set	P Set		Setting the OCP test parameters
<u>(-</u>	CP	0	I start		Setting the starting current value
	Fest	CP	I end		Setting the ending current value
		Set	Steps		Setting the No. of current increasing steps
			Dwell		Setting the dwelling time of each step
			V trig		Setting the trigger level of the OCP test
		Start Test			Starting OCP test mode
	Load	Effect			Setting load effect
	L	Load Set			Setting load effect loading parameters
	bad	L	Imin		Setting the low-level loading current
	Effe	bad	Imax		Setting the high-level loading current
	čt	Set	Inorm	al	Setting the normal working current
			Delay		Setting the delay time of the loading current
		Start Test			Starting load effect test
	Volt.	Trig.			Voltage level trigger initiate the static test
		Volt. Trig	5		Enable or disable voltage level trigger
			OFF		Disable the voltage level trigger
			ON		Enable the voltage level trigger
		Vtrig			Setting the trigger voltage
Trans	sient Te	est			Setting transient test
Ţ	Swee	р			Setting frequency sweep
Test	S	Sweep Se	et		Setting frequency sweep parameters
ι F	veel		Imin		Setting low-level current
			Imax		Setting high-level current
			Fstart		Setting the sweep starting frequency
			Fend		Setting the sweep ending frequency

			Fstep		Setting the step frequency
			Dwell		Setting the dwelling time of one frequency
			Duty		Setting the duty cycle
			∕ Ra	te	Setting the current rising slew rate
			∖ Ra	te	Setting the current falling slew rate
		Start Test			Starting Sweep test mode
		Sweep Mode			Setting Sweep working modes
			Auto		Automatic mode
			Manu	al	Manual mode. Users can use rotary knob to fine tune the
					sweep frequency.
	Timir	ıg			Setting timing measurement
	Ţ.	Load Set			Setting the loading condition
	ning		Mode		Setting the loading mode
	04		Value		Setting the loading value
		Trig.Start	-		Setting the trigger starting condition
		Tr	Signal	l	Setting the trigger signal source
		ig.S		Voltage	Setting trigger signal source as inputting voltage.
		tart		Current	Setting trigger signal source as loading current.
				Ext.TRIG	Setting trigger signal source as external trigger.
			Edge		Setting the trigger edge
				Rise	Being effective by rising edge trigger
				Fall	Being effective by falling edge trigger
			Level		Setting trigger voltage level
		Trig.End			Setting the trigger ending condition
			Signal Edge		Setting the trigger signal source
					Setting the trigger edge
			Level		Setting the trigger voltage level
		Start Test			Starting the timing measurement mode
	OVP	Test			Setting OVP test
		Vtrig			Setting the trigger voltage level of the OVP test
		Start Test			Starting the OVP test mode
Auto	Test				
A-	File				Selecting automatic test files (1~8)
Test	Load	File			Starting automatic test mode
(r	Edit F	ïle			Editing the file
	Ed	New Step			Adding a new step to the A-test file
	it Fi	Step n			Editing the n step parameters in A-test file
	le	Ste	Load		Setting the loading mode
		p n		Load Mode	Setting the loading mode
				Value	Setting the loading parameters.
			SPEC		Setting the specification type
				SPEC Type	Setting the specification type. This is related to the loading
					mode.
				Max Limit	Setting the maximum limit of being qualified
I				Min Limit	Setting the minimum limit of being qualified

		Delay	Setting the delay time
Clear File			Clearing the present A-test file
Setup)		Automatic test setup
Se	Fail Op.		Setting the handling method when a step value is tested as
tup			unqualified
		Continue	Continuing to finish the A-test when a step value is tested as
			unqualified
		Abort	Stopping the A-test immediately when a step value is tested
			as unqualified
	Trigger C	Dutput	Setting the trigger output
		Condition	Setting the trigger condition
		Pass	Initiating trigger output (TX terminal) when passing the test
		Fail	Initiating trigger output (TX terminal) when failing the test
		End	Initiating trigger output (TX terminal) when finishing the test
		Disable	Disable the trigger output
		Output Mode	Setting trigger output mode
		Level	Voltage level trigger (being effective only with low voltage
			level)
		Pulse	Pulse trigger (when passing the test, output pulse width is
			4.2ms; when failing the test, output pulse width is 8.4ms)
	Auto Rui	n	Setting the automatic run parameters
		Volt. Trig	Enabled or disabled the voltage level trigger
		OFF	Disable the voltage level trigger
		ON	Enable the voltage level trigger
		Vtrig	Setting the trigger voltage level value

Chapter Four: Panel Operation

4.1. System Set

4.1.1. Electronic Load Operation Range

Electronic load works in the range of Rated Current, Rated Voltage and Rated Power. Please refer to the right diagram for JT6312A power range.

4.1.2. Voltage & Current Range

Electronic load is available of 2 voltage ranges and current ranges. Once low voltage range and current range is selected, the corresponding measuring range will become one tenth of that of high level and the resolution will be 10 times higher. Besides, when in low current range, the maximum

current slew rate can be set as one tenth of that of high level.

4.1.3. Over Current Protection (OCP)

Electronic load possesses OCP function. This function can ensure the loading current will never exceed the current protection. The current protection can be any value no bigger than rated current.

4.1.4. Over Power Protection (OPP)

Electronic load possesses OPP function. This function can ensure the loading power will never exceed the power protection. The power protection can be any value no bigger than rated power.

4.1.5. Current Slew Rate

Electronic load supports current rising and falling slew rate programmable. The current input range is related to rated input current. Please refer to the technical data in Section 2.1.

4.1.6. Von/Voff

Electronic load supports Von/Voff function, the working principle of which is as the right diagram. When input voltage is higher than or equals Von voltage, the electronic load will start to sink current. When the input voltage is below or equals Voff value, the input state of the load will be off and the load will stop the current loading.

4.1.7. Types of Measured Sources

There are two types of measured source: CV source and CC source. Please select the right measured source. When in CR mode, the electronic load supports automatically detecting and matching the measured source, so users can set the measured source as "Auto Detect".

4.2.1. Input On/Off

Electronic load input can be toggled on/off through the On/Off key on the front panel. When input is on, the word ON will be showed at the screen status bar. When input is off, the word OFF will be showed at the screen status bar.

4.2.2. Short Circuit

Electronic load can simulate a short circuit at its input by setting the load with full-scale current. The short circuit can be set on or off by the double function key *Short* at the front panel. When short-circuit is on, the word *Short* will be showed at the screen status bar. When exiting from short circuit function, the electronic

Von/Voff loading Current Waveform

load will go back to its previous state before running short circuit function. Maximum short circuit current is the protection current set in load system.

4.3. Trigger Operation

In some special condition, the electronic load requires an external trigger signal so as to launch a program or allow synchronization with other test equipments. The electronic load supplies three trigger methods:

a) Using the double function key *Trigger* at the front panel. Pressing the key *Trigger* once finishes one trigger.

- b) Using the TRIG port at the back panel. Lowing the TRIG port voltage level finishes one trigger.
- c) Using the software. Receiving one demand finishes one trigger.

4.4. Basic Operation Modes

4.4.1. Constant Current Mode (CC)

In CC mode, the electronic load will sink a current in accordance with the programmed current value regardless of input voltage. The CC mode can be set by the following steps: first press the key *I-set* and then input the programmed current value, followed by pressing the key *Enter* for confirmation.

4.4.2. Constant Voltage Mode (CV)

In CV mode, the electronic load will sink current to control the voltage of the source to the programmed voltage value. The CV mode can be set by the following steps: first press the key *V-set* and then input the programmed voltage value, followed by pressing the key *Enter* for confirmation.

4.4.3. Constant Power Mode (CP)

In CP mode, the electronic load will sink a current according to the programmed power. The CP mode can be set by the following step: first press the key *P-set* and then input the programmed power value, followed by pressing the key *Enter* for confirmation.

The electronic load not only supports CP mode when measured source is CV source, but also supports CP mode when measured source is CC source. Users should select the source type from *System Menu*. If users select *Auto Detect*, this means CV Source is selected.

4.4.4. Constant Resistance Mode (CR)

In CR mode, the load will sink a current linearly proportional to the input voltage in accordance with the programmed resistance. The CR mode can be set by the following step: first press the key *R-set* and then input the programmed resistance value, followed by pressing the key *Enter* for confirmation.

The electronic load not only supports CR mode when measured source is CV source, but also supports CR mode when measured source is CC source. Users should select the source type from *System Menu*. If users hope the system to automatically detect and match the measured source type, please set the source type as *Auto Detect*.

4.5. LED Mode

The electronic load has LED simulation function. The LED equivalent circuit diagram, as the right diagram showed, is to connect the resistance Rd with the voltage source Vf in series. Its VI curve is equivalent to tangent of the real LED nonlinear VI curve at the operating point (Vo, Io).

In LED mode, three parameters Vo, Io & Rd Coeff need to be set. Io is the rated output current of the measured LED power supply; Vo is the corresponding

working voltage when LED power supply is at Io working current. Vo can be known by the VI curve in the LED specifications book. The electronic load is usually used to test several LED in series, so Vo should be set as several times of that of the single LED or as any value within the output voltage range of the LED power supply. Rd Coeff is the ratio of the equivalent series resistance (Rd) with the total equivalent resistance (Vo / Io) of the electronic load, that is, Rdcoeff = Rd / (Vo / Io). In series applications, Rdcoeff value is only related to the VI curve of the selected LED and has nothing to do with the number of LED in series.

Users can get the Io according to the rated output current of the LED power supply and then count the Rdcoeff with the help the VI curve in the LED specification book. Then adjust the voltage to any value within the output voltage range of the LED power supply. In this way, the electronic load can real simulate LED loading.

Users can also the shortcut key *Shift+R-set* to enter LED mode. When setting those three parameters, users can also use the rotary knob to adjust Vo.

Starting LED Mode: Menu: LED Mode: Enter LED Mode (Shortcut key: <i>Shift+R-set</i>)		
LED mode parameters setting path: Menu: LED Mode : LED Mode Set:		
Parameters	Description	
LED Vo	The corresponding working voltage when LED power supply is at Io working current.	
	Please refer to rated output voltage range of the LED power supply	
LED Io	Working current, that is, the rated output current of the LED power supply.	
Rd Coeff	Rd coefficient	

4.6. Dynamic Operation (DYNA)

Dynamic operation enables the electronic load to periodically switch between two load currents, as might be required for testing the dynamic performance of power supplies. Its working principle is as the following diagram. The electronic load starts loading from current Ia, and after Ta dwelling time, the current Ia will rise to current Ib according to the programmed current rising slew rate. The rising time and the electronic load loading time with current Ib is called dwelling time Tb. After Tb dwelling time, the current Ib will fall to current Ia according to the programmed current falling slew rate. Then the electronic load will go on loading with current Ia. At the moment of current changing, the input voltage will either become voltage overshoot or voltage drop. And the electronic load will real-time display peak voltage (Vp+) when in overshoot and valley voltage (Vp-) when in drop.

DYNA: Enter Dynamic Mode		
DYNA: Dynamic Set:		
Parameters	Description	Unit
Ia	Low-level loading current	А
Та	Low-level current dwelling time (range:10uS~50S; resolution: 2uS)	mS
Ib	High-level loading current	А
Tb	High-level current dwelling time (range:10uS~50S; resolution: 2uS)	mS
∕ Rate	Current rising slew rate	A/uS
∖Rate	Current falling slew rate	A/uS
Mode	Working modes (Continuous/ Pulse/ Toggle)	-
DYNA working modes setting path DYNA: Dynamic Set: Mode:		
Continuous	In continuous mode, the electronic load will periodically switch between the low and	
	high loading current according to the programmed current slew rate and d	lwelling time.
Pulse	In pulse mode, the electronic load current will rise to current <i>Ib</i> according to the	
	programmed current rising slew rate when receiving a trigger signal. Af	ter Tb dwelling
	time, the current Ib will fall to the current Ia according to the progr	ammed current
	falling slew rate.	
Toggle	In toggle mode, the electronic load current will rise to the current <i>Ib</i> a	ccording to the
	programmed current rising slew rate or fall to the current Ia act	cording to the
	programmed current falling rate once receiving a trigger signal.	

4.7. List Operation (List)

List function lets you simulate a real electronic load or edit the electronic load loading waveforms. The electronic load will start loading according to the programmed list files. You can program up to 8 files in the list and each file is with 200 steps. The current slew rate of each step can be programmed.

Selecting a list file: List: File: List m $(1 \le m \le 8)$		
Clearing a list file: List: Clear File		
Adding a new s	tep to a certain list file: List: Edit File: New Step	
Starting list file	: List: Load File	
A step parameters setting path List: Edit File: Step n: $(1 \le n \le 200)$		
Parameters	Description	Unit
Current	Loading current	А
Dwell	Dwelling time (range: 10uS-50S, resolution: 2uS)	mS
SR	Current slew rate.	A/uS
List working mode setting path: List: Mode :		
Continuous In continuous mode, the electronic load starts loading continuously according to		y according to

	programmed steps sequence.
Count	In count mode, once receiving a trigger signal, the electronic load starts loading
	according to the programmed steps sequence. After repeating for "Count" times,
	the electronic load will stop loading. Count setting range can be 1~99999999.
Step	In step mode, once receiving a trigger signal, the electronic load starts loading
	according to that step setting parameters.

4.8. Measured Items

4.8.1. Average Voltage (V) & Average Current (I) Measurement

The electronic load supports average voltage (V) and average current (I) measurement and display them in real-time. The maximum measuring bandwidth of the load is 250KHZ. Even when the ripple is big, the load can also achieve the accurate measurement. Besides, the load also provides three measuring rates (Refer to the Section 4.18—Personalized Display Setting for the detail). The fastest measuring rate is 10Hz, which satisfy the fast measuring demands while the slowest measuring rate is 2Hz, the stability of which is better even under harsh conditions. The medium measuring rate is 5Hz. Both the voltage and the current can be set into high and low two ranges. When in low range, the load can achieve higher measuring accuracy.

4.8.2. Ripple Voltage (V_{PP}) and Ripple Current (I_{PP}) Measurement

The electronic load supports ripple voltage (V_{PP}) and Ripple current (I_{PP}) measurement and display them in real-time.

Different from the traditional method of using oscilloscopes add capacitance to measure the ripple, the load measuring ripple possesses good flatness (when in bandwidth range). Therefore, the load can measure the ripple more accurately with high reproducibility.

4.8.3. Peak Voltage (V_{P+}/V_{P-}) and Peak Current (I_{P+}/I_{P-}) Measurement

The electronic load supports peak voltage(V_{P+}/V_{P-}) and peak current (I_{P+}/I_{P-}) measurement and display them in real-time. In dynamic loading mode, this function shows more importance. V_{P+} means the voltage overshoot in transient test while V_{P-} means the voltage drop in transient test. The importance of this function lie in that in automatic test (A-test) (Refer to Section 4.11), the load can achieve the qualification judgment of the transient test.

4.9. Static Test Mode (S-Test)

4.9.1. Over Current Protection Test (OCP)

The electronic load has over current protection function, the principle of which is as the right diagram. The electronic load starts loading from starting current (Istart) and gradually increase the current to the ending current (Iend) according to the programmed steps. When detecting that the input voltage level has decreased to trigger voltage level (Vtrig), the electronic load will think the measured power supply has started OCP and the current at that

time is the measured power supply's OCP point. Meanwhile, the electronic load will fully monitor input power, automatically capture maximum power (Pmax) and the voltage (V) & current (I) at the maximum power.

Starting OCP test: S-Test: OCP Test: Start Test

OCP parameters setting path: S-Test: OCP Test: OCP Set:

Nanjing Jartul Electronics Co., Ltd

Parameters	Description	Unit
I start	Starting current	А
I end	Ending current	А
Steps	Total steps of current increasing (1~1000)	-
Dwell	Dwelling time of each step (0.01~999.99)	mS
V trig	Trigger voltage level	V

4.9.2 Load Effect Test (Load Effect)

The electronic load has load effect test function, the principle of which is as the following diagram. The electronic load starts loading at three different currents (Imin, Inormal, Imax). After programmed delay time, the electronic load will automatically record the corresponding voltages when loading at those three different currents and count the electronic load regulation, Δ V and measured power supply resistance according to the following formula.

Vmax = Vdc@Imin	Vmin = Vdc@Imax
$\Delta V = Vmax - Vmin$	$Rs = \Delta V / (Imax - Imin)$
Regulation = $\Delta V / V$ normal	

Starting load effect test: S-Test: Load Effect: Start Test		
Load effect test parameters setting path: S-Test: Load Effect: Load Set:		
Parameters	Description	Unit
Imin	Low-level loading current	А
Imax	High-level loading current	А
Inormal	Normal working current	А
Delay	Loading current delay time of each step	S

4.10 Transient Test (T-Test)

4.10.1 Dynamic Frequency Sweep (Sweep)

The electronic load has dynamic frequency sweep function. With this function, the electronic load can capture the peak voltage value (Vp+) and valley voltage value (Vp-) V of the measured power supply under the worst circumstances. The electronic load periodically switches between two load levels according to the programmed I current rising slew rate and falling slew rate, which is similar to

the load in dynamic mode. The difference is that the dwelling time of each current level is determined by sweep frequency and duty cycle when in dynamic frequency sweep function. Meanwhile, the sweep frequency starts from starting frequency (Fstart) and rise to ending frequency (Fend) step by step according to the programmed each step frequency (Fstep) and programmed each frequency dwelling time (Dwell). When the electronic load starts sweeping, at the moment of current changing, the input voltage will either become voltage overshoot or voltage drop. And electronic load will real-time display peak voltage (Vp+) when in overshoot and valley voltage (Vp-) when in drop. When sweeping is finished, the electronic load will display the maximum peak voltage, the minimum valley voltage, and the frequency point at which the maximum peak voltage occurs.

Starting sweep test: T-Test: Sweep: Start Test		
Sweep parameters setting path: T-Test: Sweep: Sweep Set:		
Parameters	Description	Unit
Imin	Low-level loading current	А

Nanjing Jartul Electronics Co., Ltd

Imax	High-level loading current	А
Fstart	Starting frequency, 0.01Hz~50Khz	Hz
Fend	Ending frequency, 0.01Hz~50Khz	Hz
Fstep	Step frequency, 0.01Hz~50Khz	Hz
Dwell	Dwelling time of each frequency, 0.001S~99.999S	S
Duty	Duty cycle, 1%~99%	%
	Current rising slew rate	A/us
↘ Rate	Current falling slew rate	A/us
Sweep mode setting path: T-Test: Sweep: Sweep Mode:		
Auto	Automatic mode	-
Manul	Manual mode. Sweep frequency can be adjusted by rotary knob	-
	according to the programmed step frequency (Fstep).	

4.10.2 Timing Measurement (Timing)

Electronic load has timing measurement function with 0.1mS accuracy. In programmed condition, the electronic load can automatically capture two trigger signals and count out the time interval of two signals occurring. When finishing test, the electronic load will automatically display the time interval.

Starting timing measurement: T-Test: Timing: Start Test		
Timing measurement loading parameters setting path: T-Test: Timing: Load Set		
Parameters	Description	
Mode	Loading working mode (choices: CC / CV / CP / CR / OFF)	
Value	Load setting value	
Starting trigger parameters setting path: T-Test: Timing: Trig. Start		
Ending trigger parameters setting path: T-Test: Timing: Trig. End		
Signal	Trigger signal source (choices: TRI / Voltage / Current)	
Edge	Trigger methods selection (choices: rising edge (Rise)/ falling edge (Fall))	
Level	Trigger voltage level	

4.10.3 Over Voltage Protection (OVP) Test

The electronic load has over voltage protection (OVP) test function. After capturing peak voltage and falling edge of the input voltage, the electronic load will start a trigger at programmed trigger voltage level (Vtrig) at the falling edge. And the peak voltage at the trigger voltage level point will be regarded as the measured power supply OVP point. The time interval from peak voltage occurring to trigger occurring will be the measured power supply OVP response time (Tovp). The Tovp measuring accuracy is 2uS.

Starting OVP test:	T-Test: OVP Test: Start Test	
OVP test paramete	rs setting path: T-Test: OVP Test:	
Parameters	Description	
Vtrig	Protection Trigger voltage level, which should be higher than the output voltage	
	level of the measured power supply under the overvoltage protection.	

4.11 Automatic Test (A-Test)

Automatic test function is often used to test products in the production line. The electronic load start loading and test according to the programmed steps in the A-test files, and automatically judge if the measured power supply passed or failed the test.

You can program up to 8 files and each file is with 50 steps. The loading condition (Load), specification (SPEC) and delay time of each step can all be programmed. The delay time can be set as either waiting a trigger signal or any time ranging from 0.1S to 99S.

Loading condition supports several working modes. Each working mode is with different specification items. Please refer to the following table for the details.

A-Test files selection: A-Test: File: List m $(1 \le m \le 8)$		
Clearing A-Test files: A-Test: Clear File		
Adding a new step to A-Test file: A-Test: Edit File: New Step		
Starting A-Test n	node: A-Test: Load File	
Working mode p	arameters setting path: A-Test: Edit File: Step n: Load: Mode:	
Parameters	Description	
CC	Constant current mode	
CV	Constant voltage mode	
СР	Constant power mode	
CR	Constant resistance mode	
DYNA	Dynamic loading mode	
OCP	OCP test mode	
Sweep	Dynamic sweep mode	
Load Effect	Load effect test mode	
LED	LED mode	
Tested items para	ameters setting path: A-Test: Edit File: Step n: SPEC:	
Current	Loading current (be effective in CC,CV,CP,CR& LED working modes)	
Voltage	Input voltage (be effective in CC,CV,CP,CR& LED working modes)	
Power	Loading power (be effective in CC,CV,CP,CR& LED working modes)	
Resistance	Equivalent resistance (be effective in CC,CV,CP,CR& LED working modes)	
Vpp	Ripple voltage (be effective in CC,CV,CP,CR, DYNA & LED working modes)	
Ірр	Ripple current (be effective in CC,CV,CP,CR, DYNA & LED working modes)	
Vp+	Peak voltage (be effective in CC,CV,CP,CR, DYNA, Sweep & LED working modes)	
Vp-	Valley voltage (be effective in CC,CV,CP,CR, DYNA, Sweep & LED working modes)	
Ip+	Peak current (be effective in CC,CV,CP,CR, DYNA & LED working modes)	
Ip-	Valley current (be effective in CC,CV,CP,CR, DYNA & LED working modes)	
OCP	Over current protection (be effective in OCP mode)	
Pmax	Maximum power (be effective in OCP mode)	
Reg.	Load regulation (be effective in Load Effect mode)	
ΔV	The voltage difference when loading at Imin & Imax (be effective in Load Effect mode)	
Rs	Power supply series resistance (be effective in Load Effect mode)	
A-Test failing items processing methods setting path: A-Test: Setup: Fail Op.:		
Continue	Continue to finish all the tested items even when a certain step tested item failed the test.	
Abort	End the automatic test immediately when a certain step tested item failed the test.	
A-Test trigger condition parameters setting path: A-Test: Setup: Trigger Output: Condition:		
Pass	When passing the test, initiate the trigger output (TX terminals)	
Fail	When failing the test, initiate the trigger output (TX terminals)	
End	When finishing the test, initiate the trigger output (TX terminals)	
Disable	Disable the trigger output.	

Nanjing Jartul Electronics Co., Ltd

A-Test trigger output methods setting path: A-Test: Setup: Trigger Output: Mode:			
Level	Voltage level trigger (being effective only with low voltage level)		
Pulse	Pulse trigger (low voltage level pulse. When passing the test, output pulse width is		
	4.2ms; when failing the test, output pulse width is 8.4ms)		
A-Test trigger output methods setting path: A-Test: Setup: AutoRun: Volt.Trig.:			
OFF	Disable automatic run mode of the voltage level trigger.		
ON	Enable the automatic run mode of the voltage level trigger.		

4.12 Battery Capacity Test (Battery)

The electronic load has battery capacity test function. Battery discharge test can be operated in CC, CR and CP mode. How to stop discharge, there are three conditions can be selected to set: voltage, capacity and time. When starting the test, the electronic load will real-time display battery discharge duration time, accumulated mAh battery capacity and WH battery capacity. When the battery voltage falls to the programmed ending voltage, the electronic load will finish the test and stop loading.

Starting battery capacity test: Battery: Start Test			
Battery capacity tes	ting parameters setting path: Battery : Discharge Set:		
Parameters	Description		
Mode	Discharge operation modes: CC、 CP & CR modes.		
Value	Loading parameters (In CC mode, value refers to current value. In CP mode, value refers to CP mode. In CR mode, value refers to resistance value.)		
Stop condition	Stop discharge condition		
Enable	Enable the discharge condition. The ending voltage, discharge capacity and discharge time can be enabled or disabled respectively.		
Voltage	Setting the discharge stopping voltage.		
Capacity	Setting the discharge stopping capacity. The unit can be Ah/Wh.		
Time	Setting the discharge time. The unit is second.		

4.13 Multi Loads Synchronous Control

The electronic load has multi loads synchronous control function. When in synchronous control, the electronic load supports up to 16 loads Sync. loading & dynamic test, with one load as master load and other loads as slave loads, very fit for testing multi-output power supply. The addresses of slave loads cannot be the same. The effective range of the addresses is from 1 to 15. Besides, the electronic load also support up to 16 loads parallel operation for high power. In parallel operation, the electronic load will start intelligent power allocation and all the slave loads will be disabled.

After connecting the loads in parallel and setting the parameters of each load, scan the slave loads first, then initiate the master-slave synchronous control. When the master load is restarted, the slave loads will be scanned automatically once. So if master load is powered on after slave loads booting up, it is no need to scan the slave loads manually. If the slave loads are powered on or powered off, the master load will also be scanned automatically once.

Scanning the slave loads:		Menu: Config: Sync. Mode: Scan Slave
Setting the addresses of slaves loads:		Menu: Config: Sync. Mode: Address
Synchronous control parameters setting path:		Menu: Config: Sync. Mode:
Parameters	Description	

Sync. Run	Synchronous control. <i>ON</i> means enable the function; <i>OFF</i> means disable the function.	
Parallel	Parallel control. <i>ON</i> means enable the intelligent power allocation; <i>OFF</i> means disable the intelligent power allocation.	
Role	Setting the role of the electronic load. <i>Master</i> means setting this load as master load and <i>Slave</i> means setting this load as slave load.	

Working Mode	Parameters	Status
Single load mode	Sync. Run	OFF
Setting the master load	Sync. Run	ON
when in synchronous	Parallel	OFF
control	Role	Master
Setting the slave loads	Sync. Run	ON
when in synchronous	Parallel	OFF
control	Role	Slave
Setting the master load	Sync. Run	ON
when in parallel	Parallel	ON
operation	Role	Master
Setting the slave loads	Sync. Run	ON
when in parallel	Parallel	ON
operation	Role	Slave

4.14 Remote Sensing

In order to eliminate the effect of the inevitable voltage drop in the load leads, the electronic load is equipped with remotes sensing, which can provides greater accuracy by allowing the load to regulate directly at the source's output terminals, as well as measure the voltage there. The connecting method is as right diagram.

If the remote sensing is enabled, the word *Sense* will be showed at the Screen.

4.15 Protection Functions

4.15.1 Over Voltage Protection

The electronic load has OVP protection. When the input voltage is 5% higher than the rated voltage, the electronic load will shut down the input immediately and display *OVER VOLT*. Meanwhile, overvoltage alarm will be triggered until the input voltage is back to the rated voltage range.

4.15.2 Over Current Protection

The electronic load has over current protection. When input current is higher than the programmed over current protection value, the electronic load will display *OC* and alarm once. Meanwhile, the electronic load will start loading according to the programmed over current protection value in CC mode.

4.15.3 Over Power Protection

The electronic load has over power protection. When input power is higher than the programmed over power protection value, the electronic load will display *OP* and alarm once. Meanwhile, the electronic load

will start loading according to the programmed over power protection value in CP mode.

4.15.4 Over Temperature Protection

The electronic load has over temperature protection. Once the internal temperature exceeds 80° C, the over temperature alarm will be triggered and the electronic load will display *OVER TEMP*. Meanwhile, the electronic load will turn off the input. Users can press any key to disarm the alarm.

4.15.5 Input Polarity Reversed Protection

When the input are in polarity reversed condition (will cause short circuit), the polarity reversed protection alarm will be triggered and the electronic load will display *LOC RV*. When the remote sensing is enabled, if the remote input terminals are in polarity reversed state, the electronic load will display RMT RV and the alarm will keep sounding until the polarity is correctly connected.

4.16 Save/Recall Setting

The electronic load supports 20 groups of data saving and recalling, including the parameters set in the system and the parameters set in basic working modes(CC / CV / CP / CR).

Saving Operation: Store n (1~20) Recalling Operation: Recall n (1~20)

4.17 Rotary Knob Usage

In basic working mode, the rotary knob is used to fine-tune the setting value. Meanwhile, after pressing the rotary knob, rotating the rotary knob can fine-tune the resolution. Because there is a key hidden in the rotary knob. In Menu Operation Mode, you can also use rotary knob to select a menu quickly. At this moment, pressing the rotary knob equals pressing the *Enter* key. The function that the rotary knob fine-tunes the setting value can be disabled from the *Config* Menu.

4.18 Personalized Display Setting

The electronic load supports 3 display formats and display brightness adjustment. The range of display brightness adjustment is from 10 to 100. 10 is the darkest while 100 is the brightness. Besides, the electronic load also supports measuring rate adjusting so as to satisfy the different requirements.

Adjusting the disp	lay brightness: Menu: Config: Display: Brightness	
Display format set	ting path: Menu: Config: Display: Format: (shortcut: <shift+▲>)</shift+▲>	
Parameters	Description	
2 items	Simultaneously displaying 2 measured items. The displayed characters are big.	
3 items	Simultaneously displaying 3 measured items. The displayed characters are medium.	
6 items	Simultaneously displaying 6 measured items. The displayed characters are small.	
Adjusting the measuring rate: Menu: Config: Measure Rate: (shortcut: <shift+▼>)</shift+▼>		
Parameters	Description	
Fast	FastData update rate is 10Hz. Speed is fast, but stability is bad.	
Medium	Data update rate is 5Hz. Speed and stability are both medium.	
Slow	Data update rate is 2Hz. Speed is slow, but stability is good.	

Chapter Five: Communication Protocol (SCPI)

5.1. SCPI Command Introduction

All the programming data and returned data applied to the protocol are ASCII characters. The symbol<NL> stands for "new line" and represents the ASCII coded 0A hexadecimal (or 10 decimal).

Protocols support the following data formats:

1) <NR1>, integer, example: 285

2) <NR2>, number with decimal point, example: 0.285

3) <NR3>, number expressed by scientific notation, example: 2.85E+2

4) <Nrf>, extended format, including <NR1>,<NR2>,<NR3>, example: 285, 0.285, 2.85E2.

5) <Nrf+>, including <Nrf>, MIN, MAX, example: 285、0.285、2.85E2、MIN、MAX. MIN and

MAX are the minimum and maximum limit values that the electronic load can be set. $\ensuremath{\scriptstyle\circ}$

6) <Bool>, example: 0 | 1 or ON | OFF.

Data unit should follow the data. If the unit is the default unit of the corresponding data type in the following table, then the unit can be omitted.

Data Type	Default unit	Support unit
Voltage	V	mV
Current	А	mA
Power	W	mW
Resistance	ohm	
Slew rate	A/uS	
Time	S	mS

Some mnemonic symbols are used in SCPI protocol commands. These symbols stand for the following meaning:

Mnemonic symbol	Meaning
< >	In angle bracket, it should be the parameters abbreviation.
	Vertical line is used to separate the alternatives.
[]	In square bracket, it should be the optional items.

5.2. Register Introduction

The protocols support the following 4 registers.

a. Questionable Status

Questionable status registers includes three 16 bits registers. They are condition register, event register and enable register. The event register captures changes in conditions corresponding to condition bits in a condition register. An event (QUES bit in the status byte register) becomes true when the corresponding condition bits of the enable register is enabled. Reading an event registers clears the register (all bits set to zero). Condition register is defined as follows:

Bit	Name	Meaning
Bit0	VF	
Bit1	OC	The electronic load is in over current condition.
Bit3	OP	The electronic load is in over power condition.
Bit4	ОТ	The electronic load is in over temperature condition.
Bit8	RRV	The electronic load is in remote polarity reversed condition.
Bit11	UNR	

Bit12	LRV	The electronic load is in local polarity reversed condition.
Bit13	OV	The electronic load is in over voltage condition.

b. Standard Event Status

The standard event status registers includes two 16 bits registers: event register and enable register. An event (ESB bit in the status byte register) becomes true if the corresponding condition bit of enable register is enabled. Reading of the standard event status register will reset it to zero. Event register is defined as follows:

Bit	Name	Meaning
Bit0	OPC	Operation is completed.
Bit2	QYE	Query error occurs.
Bit3	DDE	Device dependent error occurs.
Bit4	EXE	Execution error occurs.
Bit5	CME	Command error occurs.
Bit7	PON	The electronic load is repowered on.

c. Operation Status

The operation status registers includes three 16 bits registers: condition register, event register and enable register. The event register captures changes in conditions corresponding to condition bits in a condition register. An event (OPER bit in the status byte register) becomes true when the corresponding condition bits of the enable register is enabled. Reading an event registers clears the register (all bits set to zero). Condition register is defined as follows:

Bit	Name	Meaning
Bit0	CAL	The electronic load is in calibration condition.
Bit5	WTG	The electronic load is in waiting for a trigger condition.

d. Status Byte

The status byte registers includes two 8 bits registers: event register and enable register. An event (RQS bit in the status byte register) becomes true if the corresponding condition bit of enable register is enabled. Reading an event registers clears the register (all bits set to zero). Event register is defined as follows:

Bit	Name	Meaning
Bit3	QUES	Questionable. It indicates if an enabled questionable event has occurred.
Bit4	MAV	Message available. It indicates if the output queue contains data.
Bit5	ESB	Event status bit. It indicates if an enabled standard event has occurred.
Bit6	RQS	
Bit7	OPER	

5.3. Common Commands

*CLS: Clear Status Command

The CLS command executes the following actions: clear these registers.

- Standard Event Status Event Register
- Questionable Status Event Register
- **Operation Status Event Register**
- Status Byte Event Register

Error Queue

Command Syntax: *CLS

*ESE Standard Event Status Enable Command/Query

This command sets the condition of the standard event status enable register, which determines which events of the standard event status event register are allowed to set the ESB (Event Summary Bit) of the status byte register. A "1" in the bit position enables the corresponding event.

*ESE <nrf></nrf>
0~255
Refer to *PSC command
*ESE 128
*ESE?
<nr1></nr1>

*ESR? Standard Event Status Register Query

This query reads the standard event status register. After reading the register, the register will be cleared as zero. The bits in the standard event status register are defined as the same with those in the standard event status enable register.

Query Syntax:*ESR?Return Parameters:<NR1>

*IDN? Identification Query

This query requests the electronic load to identify itself. Its return parameters include four strings separated by comma.

Query Syntax:	*IDN?	
Return Paramete	ers: <aard> Strings</aard>	Description
	JARTUL	Manufacture
	JT632xA	Model
	XXXXXXXXX	Serial No.
	X.XX.XX	Software edition
	Example: JARTUL	JT6321A,xxxxxxxx, A.01.02

***OPC** Operation Complete Command

This command causes the interface to set the OPC bit of the standard event status register as "1" when the electronic load has completed all pending operations.

Command Syntax:	*OPC
Query Syntax:	*OPC?
Return Parameters:	<nr1></nr1>

*PSC Power-on Status Clear Command

This command controls the automatic clearing of the status byte enable register, the operation status enable register, the questionable status enable Register and the standard event status enable register when the electronic load is re-powered on.

1 or ON This choice enables the power-on clearing of the listed registers.

0 or **OFF** This choice disable the clearing of the listed registers and they retain their status when a power-on condition occurs.

Command Syntax:	*PSC <bool></bool>
Parameters:	0 1 ON OFF
Query Syntax:	*PSC?
Return Parameters:	0 1

*RCL Recall Instrument State Command

This command restores the electronic load to a state that was previously stored in memory.		
Command Syntax:	*RCL <nr1></nr1>	
Parameters:	1~20	
Example:	*RCL 3	
*RST Reset Command		
This command resets the state of the electronic load to its factory default.		
Command Syntax:	*RST	
Parameters:	None	
*SAV Save Command		
This command stores the present state of the electronic load to a specified location in memory.		
Command Syntax:	*SAV <nr1></nr1>	
Parameters:	1~20	

Example: *SAV 3

*SRE Service Request Enable Command/Query

This commands sets the condition of the service request enable register, which determines which events of the status byte register are allowed to set RQS of the status byte register. A "1" in the bit position enables the corresponding event. The bits in the status byte enable register are defined as the same with those in the status byte register.

Command Syntax:	*SRE <nrf></nrf>
Parameters:	0~255
Power-on Value:	Refer to *PSC command
Example:	*SRE 128
Query Syntax:	*SRE?
Return Parameters:	<nr1></nr1>

*STB? Read Status Byte Query

This command reads the status byte register. The status byte register is cleared to be zero when this command is executed.

Query Syntax:	*STB?
Return Parameters:	<nr1></nr1>

***TST?** Self-test Query

These command requests the electronic load make internal self-test and report the errors.

5.4. Required Command

5.4.1. System Command

SYSTem:ERRor?

This command is used to query the error information.

Query Syntax:	SYSTem:ERRor[:NEXT]?	
Return Parameters:	<nr1>, <srd></srd></nr1>	
Example:	SYST:ERR?	

SYSTem:VERSion?

This command is used to query the SCPI version applied to the electronic load. Its format is YYYY.V

Query Syntax:	SYSTem:VERSion?
Return Parameters:	<nr1>, <srd></srd></nr1>
Example:	SYST:VERS?
SYSTem:SENSe	

	This command is used to turn	n on or turn off the remote sensing function.
	Command Syntax:	SYSTem:SENSe[:STATe] <bool></bool>
	Parameters:	0 1 OFF ON
	Reset Value:	OFF
	Example:	SYST:SENS ON
	Query Syntax:	SYSTem:SENSe[:STATe]?
	Return Parameters:	0 1
SYSTem:BEEPer:STATe		

This command is used to enable or disable the buzzer.

Command Syntax:	SYSTem:BEEPer:STATe <bool></bool>
Parameters:	0 1 OFF ON
Reset Value:	OFF
Example:	SYST:BEEP:STAT ON
Query Syntax:	SYSTem:BEEPer:STATe?
Return Parameters:	0 1

SYSTem:LOCal

This command is used to enable the local operation. All the keys at the front panel of the load are enabled for operation.

Command Syntax:	SYSTem:LOCal
Example:	SYST:LOC

SYSTem:REMote

This command is used to enable the remote operation. Except the key *Shift-Local*, all other keys at the front panel of the load are disabled for operation. Exit the remote operation by pressing the key *Shift-Local*.

Command Syntax:	SYSTem:REMote
Example:	SYST:REM

SYSTem:RWLock

This command is used to enable the remote operation. All keys at the front panel of the load, including the key *Shift-Local*, are disabled for operation. Exit the remote operation to local operation by using the command *SYSTem:LOCal*.

Command Syntax:	SYSTem:RWLock
Example:	SYST:RWL

5.4.2. Status Command

STATus:QUEStionalbe?

This command is used to read the event register in the questionable status register.

Query Syntax:	STATus:QUEStionable[:EVENt]?
Example:	STAT:QUES:EVEN?
Return Parameters:	<nr1></nr1>

STATus:QUEStionalbe:CONDition?

This command is used to read the condition register in the questionable status register.

Query Syntax:	STATus:QUEStionable:CONDition?
Example:	STAT:QUES:COND?
Return Parameters:	<nr1></nr1>

STATus:QUEStionalbe:ENABle

This command is used to set or read the enable register in the questionable status register.Command syntax:STATus:QUEStionable <NRf+>

	Naniing Jartul Electronics Co. Ltd
Parameters.	0 ~ 32767
Example:	STAT OUES ENAB 32
Ouery Syntax:	STATUS OUEStionalbe ENABle?
Return Parameters	<nr1></nr1>
STATus: OPERation?	
This command is used to rea	d the event register in the operation status register
Ouery Syntax:	STATus OPERation (EVENt)?
Example:	STAT: OPER: EVEN?
Return Parameters:	<nr1></nr1>
STATUS: OPERation: CONDitio	n?
This command is used to rea	d the condition register in the operation status register.
Ouerv Svntax:	STATus:OPERation:CONDition?
Example:	STAT:OPER:COND?
Return Parameters:	<nr1></nr1>
STATus: OPERation:ENABle	
This command is used to set	or read the enable register in the operation status register.
Command Syntax:	STATus:OPERation <nrf+></nrf+>
Parameters:	0 ~ 32767
Example:	STAT: OPER:ENAB 32
Query Syntax:	STATus:OPERation:ENABle?
Return Parameters:	<nr1></nr1>
5.5. Input Setup Command	1
5.5. Input Setup Command5.5.1. Input control	1
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut	1
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur 	n on or off the input.
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to ture Command syntax: 	n on or off the input. [SOURce:]INPut[:STATe] <bool></bool>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters:	n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON</bool>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value:	n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF</bool>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example:	n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1</bool>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax:	I n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]?</bool>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters:	I n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1</bool>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt	I n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1</bool>
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to end 	<pre>n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1</bool></pre>
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: 	n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1 able or disable the short-circuit of the input. [SOURce:]INPut:SHORt <bool></bool></bool>
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: 	n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1 able or disable the short-circuit of the input. [SOURce:]INPut:SHORt <bool> 0 1 OFF ON</bool></bool>
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: Reset Value: 	n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1 able or disable the short-circuit of the input. [SOURce:]INPut:SHORt <bool> 0 1 OFF ON OFF</bool></bool>
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: Reset Value: Example: Reset Value: Example: Command Syntax: Parameters: Reset Value: Example: Command Syntax: Parameters: Reset Value: Example:	<pre>n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1</bool></pre>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: Reset Value: Example: Query Syntax: Parameters: Reset Value: Example: Query Syntax:	<pre>n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1</bool></pre>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: Reset Value: Example: Query Syntax: Reset Value: Example: Query Syntax: Reset Value: Example: Query Syntax: Return Parameters:	<pre>n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1</bool></pre>
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: 5.5.2. System Parameters Setup 	<pre>n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1</bool></pre>
5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: Reset Value: Example: Query Syntax: Reset Value: Example: Query Syntax: Return Parameters: 5.5.2. System Parameters Setup [SOURce:]CURRent:RANGe	<pre>n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1 able or disable the short-circuit of the input. [SOURce:]INPut:SHORt <bool> 0 1 OFF ON OFF INP:SHOR 1 INPut:SHORt? 0 1</bool></bool></pre>
 5.5. Input Setup Command 5.5.1. Input control [SOURce:]INPut This command is used to tur Command syntax: Parameters: Reset Value: Example: Query Syntax: Return Parameters: [SOURce:]INPut:SHORt This command is used to ena Command Syntax: Parameters: Reset Value: Example: Query Syntax: Reset Value: Example: Query Syntax: Reset Value: Example: Query Syntax: Return Parameters: 5.5.2. System Parameters Setup [SOURce:]CURRent:RANGe This command is the set the 	<pre>n on or off the input. [SOURce:]INPut[:STATe] <bool> 0 1 OFF ON OFF INP 1 INPut[:STATe]? 0 1 able or disable the short-circuit of the input. [SOURce:]INPut:SHORt <bool> 0 1 OFF ON OFF INP:SHOR 1 INPut:SHORt? 0 1</bool></bool></pre>

Command Syntax:	[SOURce:]CURRent:RANGe <nrf+></nrf+>
Parameters:	0 ~ MAX MINimum MAXimum

Unit:	А
Reset Value:	MAXimum (high current range)
Example:	CURR:RANGE MIN
Query Syntax:	[SOURce:]CURRent:RANGe?
Return Parameters:	<nr2></nr2>

[SOURce:]VOLTage:RANGe

This command is the set the voltage range. When the set voltage is in low voltage range please select the low voltage range; otherwise select the high voltage range.

Command Syntax:	[SOURce:]VOLTage:RANGe <nrf+></nrf+>
Parameters:	0 ~ MAX MINimum MAXimum
Unit:	V
Reset Value:	MAXimum (high voltage range)
Example:	SOUR: VOLT: RANGE MIN
Query Command:	[SOURce:]VOLTage:RANGe?
Return Parameters:	<nr2></nr2>

[SOURce:]CURRent:SLEW

This command is used to set the same current rising and falling slew rate.

Command Syntax:	[SOURce:]CURRent:SLEW[:BOTH] <nrf+></nrf+>
Parameters:	MIN ~ MAX MINimum MAXimum
Unit:	A/s
Reset Value:	MAXimum
Example:	CURR:SLEW 300000
	CURR:SLEW 0.3A/uS
Query Syntax:	[SOURce:]CURRent:SLEW?
Return Parameters	<nr2></nr2>

[SOURce:]CURRent:SLEW:RISE

This command is used to set the current rising slew rate.

Command Syntax:	[SOURce:]CURRent:SLEW:RISE <nrf+></nrf+>
Parameters:	MIN ~ MAX MINimum MAXimum
Unit:	A/s
Reset Value:	MAXimum
Example:	CURR:SLEW:RISE 3000
Query Syntax:	[SOURce:]CURRent:SLEW:RISE?
Return Parameters:	<nr2></nr2>

[SOURce:]CURRent:SLEW:FALL

This command is used to set the current falling slew rate.

Command Syntax:	[SOURce:]CURRent:SLEW:RISE <nrf+></nrf+>
Parameters:	MIN ~ MAX MINimum MAXimum
Unit:	A/s
Reset Value:	MAXimum
Example:	CURR:SLEW:RISE 3000
Query Syntax:	[SOURce:]CURRent:SLEW:RISE?
Return Parameters:	<nr2></nr2>

[SOURce:]CURRent:PROTection

This command is used to set the current protection value.

Command Syntax: [SOURce:]CURRent:PROTection[:LEVel] <NRf+>

Nanjing Jartul Electronics Co., Ltd

Parameters:	0 ~ MAX MINimum MAXimum
Unit:	А
Reset Value:	MAXimum
Example:	CURR:PROT 3
Query Syntax:	[SOURce:]CURRent:PROTection[:LEVel]?
Return Parameters:	<nr2></nr2>

[SOURce:]POWer:PROTection

This command is used to set the power protection value.

Command Syntax:	[SOURce:]POWer:PROTection[:LEVel] <nrf+></nrf+>
Parameters:	0 ~ MAX MINimum MAXimum
Unit:	V
Reset Value:	MAXimum (high range)
Example:	POW:PROT 100
Query Syntax:	[SOURce:] POWer:PROTection[:LEVel]?
Return Parameters:	<nr2></nr2>

[SOURce:]VOLTage:[LEVel:]ON

This command is used to set the Von value of the electronic load.

Command Syntax:	[SOURce:]Voltage:[LEVel:]ON <nrf+></nrf+>
Parameters:	0 ~ MAX MINimum MAXimum
Unit:	V
Reset Value:	1
Example:	VOLT:ON 3
Query Syntax:	[SOURce:] VOLTage:[LEVel:]ON?
Return Parameters:	<nr2></nr2>

[SOURce:]VOLTage:[LEVel:]OFF

This command is used to set the Voff value of the electronic load.

Command Syntax:	[SOURce:]Voltage:[LEVel:]OFF <nrf+></nrf+>
Parameters:	0 ~ MAX MINimum MAXimum
Unit:	V
Reset Value:	0.5
Example:	VOLT:OFF 2
Query Syntax:	[SOURce:] VOLTage:[LEVel:]OFF?
Return Parameters:	<nr2></nr2>

5.5.3. Working Mode Control

[SOURce:]FUNCtion

[SOURce:]MODE

Command Syntax:

These two commands have the same function. Both are used to select the input working mode of the electronic load.

[SOURce:]FUNCtion < function>

[SOURce:]MODE <function></function>		
Parameters	Working Mode	
CURRent	Constant Current Mode	
VOLTage	Constant Voltage Mode	
POWer	Constant Power Mode	
RESistance	Constant Resistance Mode	
DYNamic	Dynamic Operation Mode	

Nanjing Jartul	Electronics	Co.,	Ltd
----------------	-------------	------	-----

	LED	LED Mode	
-	Reset Value:	CURRent	
	Example:	FUNC RES	
		MODE RES	
	Query Syntax:	[SOURce:]FUNCtion?	
		[SOURce:]MODE?	
	Return Parameter	s: <crd></crd>	
5.5.4.	Working Parameter	s Setup	
[SO	URce:]CURRent	•	
	This command is us	ed to set the current in CC mode.	
	Command Syntax:		
	[SOURce:]CU	RRent[:LEVel][:IMMediate][:AMPLitude] <nrf+></nrf+>	
	Parameters:	0 ~ MAX MINimum MAXimum	
	Unit:	A	
	Reset Value:	MINimum	
	Example:	CURR 5	
	Ouery Syntax:	[SOURce:]CURRent['LEVel]['IMMediate]['AMPL itude]?	
	Return Parameter	$s: < NR^{2}$	
ISO	URce: IVOL Tage		
[00	This command is us	ed to set the voltage in CV mode	
	Command Syntax.		
	Commany Syntax. [SOURce:]VOI Tege[·I EVel][·IMMediate][·AMDI itude] /NDf+>		
	Parameters: 0 ~ MAX MINimum MAXimum		
	I un un const	V	
	Reset Value	MAXimum	
	Example.	VOLT 5	
	Query Command:	[SOURce:]VOI Tage[·I EVe]][·IMMediate][·AMPI itude]?	
	Return Parameter	$\sim NR^{2}$	
[80		5. \\\\\2>	
[50	This command is us	ed to set the power in CP mode	
	Command syntax:	ed to set the power in er mode.	
	ISOU	Rce·]POWer[·I EVe]][·IMMediate][·AMPI itude] <nrf+></nrf+>	
	Parameters.	$0 \sim MAX MINimum MAXimum$	
	I arameters.	W	
	Rosot Value	MINimum	
	Fyamnle.	POW 10	
	Ouery Syntax:	[SOUP co:]POWer[·] EVel][·IMMediate][·AMPI itude]?	
	Doturn Poromotor		
ISO	NIP co-1PESistanco	5. \I\K2>	
This common d is used to get the mediateness in CD much			
	Commond Suntay:		
	Commanu Syntax:		
	Doromotore:	$0 \rightarrow MAX + MINimum + MAXimum$	
	1 al anielers:	0 ~ MAA MINIMUM MAAIMUM	
	Ulliti Dogot Voluce	MAXimum	
	Reset value:		
	Example:	KES J	

Query Syntax: [SOURce:]RESistance[:LEVel][:IMMediate][:AMPLitude]?

Return Parameters: <NR2> [SOURce:]CURRent:DYNamic:HIGH

This command is used to set the high-level loading current in dynamic mode.

Command Syntax:	[SOURce:]DYNamic:HIGH[:LEVel] <nrf+></nrf+>
Parameters:	0 ~ MAX MINimum MAXimum
Unit:	А
Reset Value:	0
Example:	CURR:DYN:HIGH 10
Query Syntax:	[SOURce:] DYNamic:HIGH[:LEVel]?
Return Parameters:	< NR2>

[SOURce:]CURRent:DYNamic:HIGH:DWELI

This command is used to set the dwelling time of the high-level loading current in dynamic mode.

Command Syntax:	[SOURce:] DYNamic:HIGH:DWELl <nrf+></nrf+>
Parameters:	0.00002 ~ 0.999 MINimum MAXimum
Unit:	S
Reset Value:	0.00002
Example:	CURR:DYN:HIGH:DWELL 10
Query Syntax:	[SOURce:] DYNamic:HIGH:DWEL1?
Return Parameters:	< NR2>

[SOURce:]CURRent:DYNamic:LOW

This command is used the low-level loading current in dynamic mode.

Command Syntax	k: [SOURce:] DYNamic:LOW[:LEVel] <nrf+></nrf+>
Parameters:	0 ~ MAX MINimum MAXimum
Unit:	А
Reset Value:	0
Example:	CURR:DYN:LOW 1
Query Syntax:	[SOURce:] DYNamic:LOW[:LEVel]?
Return Paramete	rs: < NR2>

[SOURce:]CURRent:DYNamic:LOW:DWELl

This command is used to set the dwelling time of the low-level loading current in dynamic mode.

Command Syntax:	[SOURce:] DYNamic:LOW:DWELl <nrf+></nrf+>
Parameters:	0.00002 ~ 0.999 MINimum MAXimum
Unit:	S
Reset Value:	0.00002
Example:	CURR:DYN:LOW:DWEL 10
Query Syntax:	[SOURce:] DYNamic:LOW:DWELl?
Return Parameters:	< NR2>

[SOURce:]CURRent:DYNamic:SLEW

This command is used to set the same current rising and falling slew rate in dynamic mode.

Command Syntax:	[SOURce:] DYNamic:SLEW <nrf+></nrf+>
Parameters:	MIN ~ MAX MINimum MAXimum
Unit:	A/s
Reset Value:	MAX
Example:	CURR:DYN:SLEW 30000
Query Syntax:	[SOURce:] DYNamic:SLEW?
Example: Query Syntax:	CURR:DYN:SLEW 30000 [SOURce:] DYNamic:SLEW?

Return Parameters: < NR2>

[SOURce:]CURRent:DYNamic:SLEW:RISE

This command is used to set the current rising slew rate in dynamic mode.

Command Syntax:	[SOURce:] DYNamic:SLEW:RISE <nrf+></nrf+>	
Parameters:	MIN ~ MAX MINimum MAXimum	
Unit:	A/s	
Reset Value:	MAX	
Example:	CURR:DYN:SLEW 30000	
Query Syntax:	[SOURce:] DYNamic:SLEW:RISE?	
Return Parameters:	< NR2>	

[SOURce:]CURRent:DYNamic:SLEW:FALL

This command is used to set the current falling slew rate in dynamic mode.

Command Syntax:	[SOURce:] DYNamic:SLEW:FALL <nrf+></nrf+>
Parameters:	MIN ~ MAX MINimum MAXimum
Unit:	A/s
Reset Value:	MAX
Example:	CURR:DYN:SLEW:FALL 30000
Query Syntax:	[SOURce:] DYNamic:SLEW:FALL?
Return Parameters:	< NR2>

[SOURce:]CURRent:DYNamic:MODE

This command is used to set the working mode in dynamic mode.

Command Syntax:	[SOURce:] DYNamic:MODE <mode></mode>
Parameters:	CONTinuous PULSe TOGGle
Reset Value:	CONTinuous
Example:	CURR:DYN:MODE PULS
Query Syntax:	[SOURce:] DYNamic:MODE?
Return Parameters:	<crd></crd>

LED:VOLTage

This command is used to set LED Vo.

Command Syntax:	LED:VOLTage <nrf+></nrf+>
Parameters:	0.001~MAX
Example:	LED:VOLT 18
Query Syntax:	LED:VOLT?
Return Parameters:	<nr2></nr2>

LED:CURRent

This command is used to set LED Io.

Command Syntax:LED:CURRent <Nrf+>Parameters:0~MAXExample:LED:CURR 0.35

- **Query Syntax:** LED:CURR?
- **Return Parameters:** <NR2>

LED:RCOeff

This command is used to set LED Rd Coeff.

Command Syntax:	LED:RCOeff <nrf+></nrf+>
Parameters:	0.001~1
Example:	LED:RCO 0.2

Query Syntax:	LED:RCO?
Return Parameters:	<nr2></nr2>

5.6. Measure Command

MEASure:VOLTage?

This command is used to read the average voltage.

Command Syntax:	MEASure[:SCALar]:VOLTage[:DC]?
Example:	MEAS:VOLT?

Return Parameters: <NR2>

MEASure:VOLTage:MAXimum?

This command is used to read the peak voltage Vp+.

Command Syntax:	MEASure[:SCALar]:VOLTage:MAXimum?
Example:	MEAS:VOLT:MAX?

Return Parameters: <NR2>

MEASure:VOLTage:MINimum?

This command is used to read the valley voltage Vp-.

Command Syntax:	MEASure[:SCALar]:VOLTage:MINimum?
Example:	MEAS:VOLT:MIN?

Return Parameters: <NR2>

MEASure:VOLTage:PTPeak?

This command is used to read the peak to peak voltage Vpp.

Command Syntax:	MEASure[:SCALar]:VOLTage:PTPeak?
Example:	MEAS:VOLT:PTP?
Return Parameters:	<nr2></nr2>

MEASure:CURRent?

This command is used to read the average current.

Command Syntax: MEASure [:SCALar]:CURRent[:DC]?

Example:	MEAS:CURR?
Example:	MEAS:CURR

Return Parameters: <NR2>

MEASure: CURRent:MAXimum?

This command is used to read the peak current Vp+.

Command Syntax: MEASure[:SCALar]:CURRent:MAXimum? MEAS:CURR:MAX? **Example:**

Return Parameters: <NR2>

MEASure: CURRent:MINimum?

This command is used to read the valley current Vp-.

Command Syntax: MEASure[:SCALar]:CURRent:MINimum? MEAS:CURR:MIN?

Example:

Return Parameters: <NR2>

MEASure:CURRent:PTPeak?

This command is used to read peak to peak current Ipp.

Command Syntax:	MEASure[:SCALar]:CURRent:PTPeak?
-----------------	----------------------------------

Example:	MEAS:CURR:PTP?

Return Parameters: <NR2>

MEASure:POWer?

This command is used to read average power.

Command Syntax:	MEASure [:SCALar]:POWer[:DC]?
Example:	MEAS:POWer?
Return Parameters:	<nr2></nr2>
MEASure:RESistance?	
This command is used	to read equivalentresistance.
Command Syntax:	MEAS[:SCALar]:RESistance[:DC]?

	1
Command Syntax:	MEAS[:SCALar]:RESistance[:DC]
Example:	MEAS:RESistance?
Return Parameters:	<nr2></nr2>

5.7. OCP Test Command

OCP[:STATe]

This command is used to start or stop OCP test.

Command Syntax:	OCP[:STATe] <bool></bool>
Parameters:	0 1 OFF ON
Example:	OCP ON
Query Syntax:	OCP[:STATe]?
Return:	0 1

OCP:ISTart

This command is used to set the starting current of the OCP test.

Command Syntax:	OCP:ISTart <nrf+></nrf+>
Parameters:	$0 \sim MAX$
Unit:	А
Example:	OCP:IST 3
Query Syntax:	OCP:ISTart?
Return:	< NR2>

OCP:IEND

This command is used to set the ending current of the OCP test.

Command Syntax:	OCP:IEND <nrf+></nrf+>
Parameters:	$0 \sim MAX$
Unit:	А
Example:	OCP:IEND 6
Query Syntax:	OCP:IEND?
Return:	< NR2>

OCP:STEP

This command is used to set the current rising steps of the OCP test.

Command Syntax:	OCP:STEP <nr1></nr1>
Parameters:	$1 \sim 1000$
Example:	OCP:STEP 500
Query Syntax:	OCP:STEP?
Return:	<nr2></nr2>

OCP:DWELl

This command is used to set the single step dwelling time of the OCP test.

Command Syntax:	OCP:DWEL1 <nrf+></nrf+>
Parameters:	0.00001 ~ 0.99999
Unit:	S
Example:	OCP:DWEL 0.01 or OCP:DWEL 10ms

Query Syntax:	OCP:DWEL?
Return:	< NR2>

OCP:VTRig

This command is used to set the trigger voltage level of the OCP test.

Command Syntax:	OCP:VTRig <nrf+></nrf+>
Parameters:	$0 \sim MAX$
Unit:	V
Example:	OCP:VTR 11.8
Query Syntax:	OCP:VTRig?
Return:	< NR2>

OCP:RESult[:OCP]

This command is used to query the current at OCP point.

Command Syntax:	OCP:RESult[:OCP]?
Parameters:	<nrf+></nrf+>
	-1 means the test has not finished yet.
	-2 means the voltage of the measured power supply doesn't drop to the
	Vtrig, i.e. OCP isn't initiated.
Unit:	А
Example:	OCP:RES?
Return:	4.68

OCP:RESult:PMAX

This command is used to query Pmax point.

Command Syntax:	OCP:RESult:PMAX?
Parameters:	<nr2>, <nr2>, <nr2></nr2></nr2></nr2>
Unit:	W, V, A
Example:	OCP:RES:PMAX?
Return:	55.34, 11.8, 4.69

Means the maximum power at Pmax point is 55.34W and the voltage and current at Pmax point is 11.8V & 4.69A respectively.

5.8. OVP Test Command

OVP[:STATe]	This command is used to start or stop OVP test.
Command Syntax:	OVP[:STATe] <bool></bool>
Parameters:	0 1 OFF ON
Example:	OVP ON
Query Syntax:	OVP[:STATe]?
Return:	0 1
OVP:VTRig	This command is used to set OVP trigger level.
Command Syntax:	OVP:VTRig <nrf+></nrf+>
Parameters:	$0 \sim MAX$
Unit:	V
Example:	OVP:VTR 4
Query Syntax:	OVP:VTRig?
Return:	< NR2>
OVP:RESult[:OVP]	This command is used to query the voltage value at OVP point.
Command Syntax:	OVP:RESult[:OVP]?

Return Parameters:	<nrf+></nrf+>
	-1 means the test has not been finished yet.
	-2 means OVP test has not been started yet.
Unit:	V
Example:	OVP:RES?
Return:	6.68
OVP:RESult:TIME	This command is used to query tovp
Command Syntax:	OVP:RESult:TIME?
Return Parameters:	< NR2>
Unit:	S
Example:	OVP:RES:TIME?
Return:	0.126

5.9. Timing Measurement Command

TIMing[:STATe]

This command is used to start or stop Timing Measurement.

Command Syntax:	TIMing[:STATe]	<bool></bool>
Parameters:	0 1 OFF ON	
Example:	TIM ON	
Query Syntax:	TIMing[:STATe]?	
Return:	0 1	

TIMing:LOAD:SETTing

This command is used to confirm if the load setup is changed in timing measurement.

命令语法	TIMing:LOAD:SETTing <bool></bool>
参数	0 1 OFF ON
	ON means when the timing measurement is started, the load setup will be changed
	according to the setup in TIMing:LOAD and when the timing measurement is
	finished, the load input will be off.
	OFF means the load setup will not be changed when the timing measurement is
	started or finished.
例子	TIM:LOAD:SETT OFF
查询语法	TIMing:LOAD:MODE?
返回	<mode></mode>
Ming:LOAD:N	MODE

TI

This command is used to set the loading mode of the timing measurement

Command Syntax:	TIMing:LOAD:MODE <mode></mode>
Parameters:	CURR VOLT POW RES OFF
Example:	TIM:LOAD:MODE CURR
Query Syntax:	TIMing:LOAD:MODE?
Return:	<mode></mode>
Related Command:	If there is the command TIM:LOAD:SETT OFF, then the command
	TIMing:LOAD:MODE can be ignored.

TIMing:LOAD:VALue

This command is used to set the loading parameters of the timing measurement. **Command Syntax:** TIMing:LOAD:VALue <Nrf+>

Nanjing Jartul Electronics Co., Ltd

Parameters:	A / V / W / ohm, depends on TIMing:LOAD:MODE
Example:	TIM:LOAD:VAL 1
Query Syntax:	TIMing:LOAD:VALue?
Return:	<nr2></nr2>
Related Command:	If there is the command TIM:LOAD:SETT OFF, then the command
	TIMing:LOAD:MODE can be ignored.

TIMing:TSTart:SOURce

This command is used to set the trigger source of the start-up test.

Command Syntax:	TIMing:TSTart:SOURce <source/>
Parameters:	VOLT CURR EXT
Example:	TIM:TST:SOUR VOLT
Query Syntax:	TIMing:TSTart:SOURce?
Return:	<source/>

TIMing:TSTart:EDGE

This command is used to set the trigger edge of the start-up test.

Command Syntax:	TIMing:TSTart:EDGE <edge></edge>
Parameters:	RISE FALL
Example:	TIM:TST:EDGE RISE
Query Syntax:	TIMing:TSTart:EDGE?
Return:	<edge></edge>

TIMing:TSTart:LEVel

This command is used to set the trigger voltage level of the start-up test.

TIMing:TSTart:LEVel <nrf+></nrf+>
depends on the start-up trigger source, that is, Timing:TSTart:SOURce
TIM:TST:LEV 1
TIMing:TSTart:LEVel?
<nr2></nr2>

TIMing:TEND:SOURce

This command is used to set the trigger source of ending the test.

Command Syntax:	TIMing:TEND:SOURce <source/>
Parameters:	VOLT CURR EXT
Example:	TIM:TEND:SOUR VOLT
Query Syntax:	TIMing:TEND:SOURce?
Return:	<source/>

TIMing:TEND:EDGE

This command is sued to the trigger edge of ending the test.

Command Syntax:	TIMing:TEND:EDGE <edge></edge>
Parameters:	RISE FALL
Example:	TIM:TEND:EDGE RISE
Query Syntax:	TIMing:TEND:EDGE?
Return:	<edge></edge>

TIMing:TEND:LEVel

This command is used to set the trigger voltage level of ending the test.

Command Syntax: TIMing:TEND:LEVel <Nrf+>

Parameters:	depends on the trigger source, that is Timing:TEND:SOURce
Example:	TIM:TEND:LEV 1

Query Syntax:	TIMing:TEND:LEVel?
Return:	<nr2></nr2>

TIMing:RESult

This command is used to query the result of the Timing measurement.

Command Syntax:	TIMing:RESult?
Unit:	S
Example:	TIM:RES?
Return:	<nr2></nr2>

5.10. Peak Test Command

Peak command can be used to read the maximum/ minimum value and clear the Peak Value Record automatically when the test is started.

PEAK[:STATe]	This command is used to start or stop the peak value test.
Command Syntax:	PEAK[:STATe] <bool></bool>
Example:	PEAK ON
PEAK:CLEar	This command is used to clear the peak value record.
Command Syntax:	PEAK:CLEar
Example:	PEAK:CLE
PEAK:VOLTage:MAXimum?	This command is used to read the maximum voltage.
Command Syntax:	PEAK:VOLTage:MAXimum?
Example:	PEAK:VOLT:MAX?
Return Parameters:	<nr2></nr2>
PEAK:VOLTage:MINimum?	This command is used to read the minimum voltage.
Command Syntax:	PEAK:VOLTage:MINimum?
Example:	PEAK:VOLT:MIN?
Return Parameters:	<nr2></nr2>
PEAK:CURRen:MAXimum?	This command is used to read the maximum current.
Command Syntax:	PEAK:CURRent:MAXimum?
Example:	PEAK:CURR:MAX?
Return Parameters:	<nr2></nr2>
PEAK:CURRent:MINimum?	This command is used to read the minimum current.
Command Syntax:	PEAK:CURRent:MINimum?
Example:	PEAK:CURR:MIN?
Return Parameters:	<nr2></nr2>

5.11.TWaveform Transient Waveform Grab Command

TWAVeform This command can be used to grab the transient voltage and current waveform when the current changes from Ia to Ib.

TWAVeform[:STATe]	This command is used to start or stop the transient waveform grab.
Command Syntax:	TWAVeform[:STATe] <bool></bool>
Example:	TWAV ON
TWAVeform:IA	This command is used to set Ia.
Command Syntax:	TWAVeform:IA <nrf+></nrf+>
Example:	TWAV:IA 1
TWAVeform:IB	This command is used to set Ib.
Command Syntax:	TWAVeform:IB <nrf+></nrf+>

Nanjing Jartul Electronics Co., Ltd **Example:** TWAV:IA 3 TWAVeform:TINTval This command is used to set the sampling interval. Range: 10us ~ 1ms. **Command Syntax:** TWAVeform:TINTval <Nrf+> TWAV:TINT 0.00001 **Example:** Sampling interval: 10us TWAVeform:POINts This command is used to set the number of the sampling points. Range: 2~4096 **Command Syntax:** TWAVeform:POINts <Nrf+> **Example:** TWAV:POIN 100 No. of sampling points: 100 points. TWAVeform:VOLTage? This command is used to read the voltage waveform data. **Command Syntax:** TWAVeform:VOLTage? Example: TWAV:VOLT? TWAVeform:CURRent? This command is used to read the current waveform data. **Command Syntax:** TWAVeform:CURRent? **Example:** TWAV:CURR?

Certification & Guarantee

JT632xA series programmable DC electronic load meet its published specifications at time of shipment from the factory.

Warranty

This instrument product is warranted against defects in material and workmanship for a period of one year from date of delivery.

Maintenance Service

This product must be returned to maintenance department designated by our company for repairing. Customer shall prepay shipping charges (and shall pay all duty and taxes) for products returned to the supplier for warranty service. Except for products returned to customer from another country, supplier shall pay for return of products to customer.

Limitation of Warranty

The foregoing warranty shall not apply to

- 1. Defects resulting from improper or inadequate maintenance by the Customer,
- 2. Unauthorized modification or misuse,
- 3. Operation outside of the environmental specifications for the product, or improper site preparation and maintenance.

4. Defects resulting from the circuit installed by clients themselves

Attention

No inform will be given for any changes in the content of the user's guide. Jartul Electronics company reserves the right to interpret.